Effects of nitroglycerin/L-cysteine on soluble guanylate cyclase: evidence for an activation/inactivation equilibrium controlled by nitric oxide binding and haem oxidation

AUTOR(ES)
FONTE

Portland Press Ltd.

RESUMO

GTN (nitroglycerin; glycerol trinitrate) causes dilation of blood vessels via activation of nitric oxide (NO)-sensitive sGC (soluble guanylate cyclase), a heterodimeric haem protein that catalyses the conversion of GTP into cGMP. Activation of sGC by GTN requires enzymatic or non-enzymatic bioactivation of the nitrate. Based on insufficient NO release and lack of spectroscopic evidence for formation of NO–sGC, the cysteine (Cys)-dependent activation of sGC by GTN was proposed to occur in an NO-independent manner. This extraordinary claim is questioned by the present findings. First, the effect of GTN/Cys was blocked by the NO scavenger oxyhaemoglobin, the superoxide-generating compound flavin mononucleotide and the haem-site sGC inhibitor ODQ (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one). Secondly, at equi-effective concentrations, GTN/Cys and the NO donor 2,2-diethyl-1-nitroso-oxyhydrazine released identical amounts of NO. Finally, at sufficiently high rates of NO release, activation of sGC by GTN/Cys was accompanied by a shift of the Soret band from 431 to 399 nm, indicating formation of NO–sGC. In the absence of Cys, GTN caused haem oxidation, apparent as a shift of the Soret band to 392 nm, which was accompanied by inactivation of the NO-stimulated enzyme. These results suggest that the effect of GTN/Cys is the result of an activation/inactivation equilibrium that is controlled by the rate of NO release and haem oxidation.

Documentos Relacionados