Electrophysiological events during neuroeffector transmission in the spleen of guinea-pigs and rats.

AUTOR(ES)
RESUMO

Intracellular recordings were made from smooth muscle cells of arterioles and the capsule of the spleen of guinea-pig and rat, and the responses to periarterial or subcapsular nerve stimulation were recorded. The innervation of the spleen was studied using fluorescence and immunohistochemical techniques. Catecholamine-containing axons were associated with smooth muscle of the splenic capsule, trabeculae, arterioles and amongst cells of the periarteriolar lymphoid sheath. Axons immunoreactive for neuropeptide Y (NPY) and tyrosine hydroxylase were distributed in an identical manner to catecholamine-containing axons, whereas axons immunoreactive for substance P or calcitonin gene-related peptide were present at a very low density in spleens from both species. In segments of arterioles, single transmural stimuli evoked excitatory junction potentials (EJPs) of 1-10 mV amplitude. EJPs facilitated during short trains of stimuli (1-10 Hz) and summated at 10 Hz, often initiating a muscle action potential. EJPs persisted in the presence of prazosin (1 microM) and idazoxan (1 microM), but were abolished by the P2x-purinoceptor antagonist suramin (1 mM). Spontaneous depolarizations were observed in smooth muscle cells of arterioles and capsule. Some events in arterioles were observed in the presence of suramin and so may originate postjunctionally independently of transmitter release. As single transmural stimuli failed to evoke a depolarization in capsular smooth muscle, spontaneous depolarizations in this tissue probably also arise postjunctionally. Short trains of high frequency stimuli (10-35 Hz) evoked biphasic depolarizations of capsular smooth muscle cells. The initial component peaked 2.5 s following the onset of stimulation; the second component peaked 15 s following the onset and decayed exponentially with a time constant of 15 s. By fitting a product of exponentials to the second component, it was possible to define the initial component, which decayed with a time constant of around 1.5 s. Neurally evoked depolarizations of capsular smooth muscle were abolished by 1 microM TTX. Blockade of alpha 1-adrenoceptors with prazosin reduced the initial component of the depolarization, whereas alpha 2-adrenoceptor blockade with idazoxan virtually abolished the second component. In some cells a small, faster depolarization persisted after alpha-adrenoceptor blockade. The slow alpha 2-adrenoceptor-mediated depolarization was identical to that recorded in the rat tail artery and in the guinea-pig mesenteric vein. The data indicate that sympathetic neuroeffector transmission from noradrenergic axons containing NPY to splenic arterial and capsular smooth muscle occur by different mechanisms.

Documentos Relacionados