Enhanced Transformability with Heterospecific Deoxyribonucleic Acid upon Removal of Nascent Ribonucleic Acid from the Streptococcus sanguis Genome

AUTOR(ES)
RESUMO

Treatment of Streptococcus sanguis recipient cells with rifampin (RIF) at the time of deoxyribonucleic acid (DNA) addition was an effective means of reducing discrimination, that is, of causing an increase in the number of transformants induced by irreversibly bound heterospecific DNA without significantly changing the number induced by bound homospecific DNA. RIF was unable to reduce discrimination when the recipient cells were RIF resistant due to an altered ribonucleic acid (RNA) polymerase. When recipient cells were treated at the time of DNA addition with concentrations of streptolydigin (STG) as inhibitory of RNA synthesis as RIF, discrimination was not reduced. The kinetics of RNA synthesis inhibition with these inhibitors indicated that, as reported for other bacterial species, RIF inhibited the initiation of transcription by RNA polymerase, whereas STG inhibited the progression of RNA polymerase at any point. Pulse-labeling of RNA immediately before STG addition showed that, if cells were incubated under STG inhibition for 10 to 15 min, their nascent RNA was degraded. Genome-bound RNA polymerase was not released under these conditions. When recipient cells were incubated with STG until nascent RNA was degraded and then exposed to transforming DNA, STG was as effective as RIF in reducing discrimination. The presence of nascent RNA was thereby implicated in the transforming inefficiency of incompletely homologous DNA.

Documentos Relacionados