Enhancing transcription through the Escherichia coli hemolysin operon, hlyCABD: RfaH and upstream JUMPStart DNA sequences function together via a postinitiation mechanism.

AUTOR(ES)
RESUMO

Escherichia coli hlyCABD operons encode the polypeptide component (HlyA) of an extracellular cytolytic toxin as well as proteins required for its acylation (HlyC) and sec-independent secretion (HlyBD). The E. coli protein RfaH is required for wild-type hemolysin expression at the level of hlyCABD transcript elongation (J. A. Leeds and R. A. Welch, J. Bacteriol. 178:1850-1857, 1996). RfaH is also required for the transcription of wild-type levels of mRNA from promoter-distal genes in the rfaQ-K, traY-Z, and rplK-rpoC gene clusters, supporting the role for RfaH in transcriptional elongation. All or portions of a common 39-bp sequence termed JUMPStart are present in the untranslated regions of RfaH-enhanced operons. In this study, we tested the model that the JUMPStart sequence and RfaH are part of the same functional pathway. We examined the effect of JUMPStart deletion mutations within the untranslated leader of a chromosomally derived hlyCABD operon on hly RNA and HlyA protein levels in either wild-type or rfaH null mutant E. coli. We also provide in vivo physical evidence that is consistent with RNA polymerase pausing at the wild-type JUMPStart sequences.

Documentos Relacionados