Epigenetic switching of transcriptional states: cis- and trans-acting factors affecting establishment of silencing at the HMR locus in Saccharomyces cerevisiae.

AUTOR(ES)
RESUMO

In this study, we used the ADE2 gene in a colony color assay to monitor transcription from the normally silent HMR mating-type locus in Saccharomyces cerevisiae. This sensitive assay reveals that some previously identified cis- and trans-acting mutations destabilize silencing, causing genetically identical cells to switch between repressed and derepressed transcriptional states. Deletion of the autonomously replicating sequence (ARS) consensus element at the HMR-E silencer or mutation of the silencer binding protein RAP1 (rap1s) results in the presence of large sectors within individual colonies of both repressed (Ade-, pink) and derepressed (Ade+, white) cells. These results suggest that both the ARS consensus element and the RAP1 protein play a role in the establishment of repression at HMR. In diploid cells, the two copies of HMR appear to behave identically, suggesting that the switching event, though apparently stochastic, reflects some property of the cell rather than a specific event at each HMR locus. In the ADE2 assay system, silencing depends completely upon the function of the SIR genes, known trans-acting regulators of the silent loci, and is sensitive to the gene dosage of two SIR genes, SIR1 and SIR4. Using the ADE2 colony color assay in a genetic screen for suppressors of rap1s, silencer ARS element deletion double mutants, we have identified a large number of genes that may affect the establishment of repression at the HMR silent mating-type locus.

Documentos Relacionados