Epstein-Barr Virus Nuclear Antigen 3C Regulates Cyclin A/p27 Complexes and Enhances Cyclin A-Dependent Kinase Activity

AUTOR(ES)
FONTE

American Society for Microbiology

RESUMO

Epstein-Barr virus (EBV) nuclear antigen 3C (EBNA3C) is essential for primary B-cell transformation. In this report we show that cyclin A, an activator of S phase progression, bound tightly to EBNA3C. EBNA3C interacted with cyclin A in vitro and associated with cyclin A complexes in EBV-transformed lymphoblastoid cell lines. Importantly, EBNA3C stimulated cyclin A-dependent kinase activity and rescued p27-mediated inhibition of cyclin A/Cdk2 kinase activity by decreasing the molecular association between cyclin A and p27 in cells. Additionally, phosphorylation of the retinoblastoma protein, a major regulator of cell cycle progression, was enhanced both in vitro and in vivo in the presence of EBNA3C. Cyclin A interacted with a region of the carboxy terminus of EBNA3C, shown to be important both for stimulation of cyclin A-dependent kinase activity and for cell cycle progression. This provides the first evidence of an essential EBV latent antigen's directly targeting a cell cycle regulatory protein and suggests a novel mechanism by which EBV deregulates the mammalian cell cycle, which is of critical importance in B-cell transformation.

Documentos Relacionados