Escherichia coli OxyR protein represses the unmethylated bacteriophage Mu mom operon without blocking binding of the transcriptional activator C.

AUTOR(ES)
RESUMO

Transcription of the bacteriophage Mu mom operon requires transactivation by the phage-encoded C protein. DNase I footprinting showed that in the absence of C, Escherichia coli RNA polymerase E(sigma)70 (RNAP) binds to the mom promoter (Pmom) region at a site, P2 (from -64 to -11 with respect to the transcription start site), on the top (non-transcribed) strand. This is slightly upstream from, but overlapping P1 (-49 to +16), the functional binding site for rightward transcription. Host DNA-[N6-adenine] methyltransferase (Dam) methylation of three GATCs immediately upstream of the C binding site is required to prevent binding of the E.coli OxyR protein, which represses mom transcription in dam- strains. OxyR, known to induce DNA bending, is normally in a reduced conformation in vivo, but is converted to an oxidized state under standard in vitro conditions. Using DNase I footprinting, we provide evidence supporting the proposal that the oxidized and reduced forms of OxyR interact differently with their target DNA sequences in vitro. A mutant form, OxyR-C199S, was shown to be able to repress mom expression in vivo in a dam- host. In vitro DNase I footprinting showed that OxyR-C199S protected Pmom from -104 to -46 on the top strand and produced a protection pattern characteristic of reduced wild-type OxyR. Prebinding of OxyR-C199S completely blocked RNAP binding to P2 (in the absence of C), whereas it only slightly decreased binding of C to its target site (-55 to -28, as defined by DNase I footprinting). In contrast, OxyR-C199S strongly inhibited C-activated recruitment of RNAP to P1. These results indicate that OxyR repression is mediated subsequent to binding by C. Mutations have been isolated that relieve the dependence on C activation and have the same transcription start site as the C-activated wild-type promoter. One such mutant, tin7, has a single base change at -14, which changes a T6 run to T3GT2. OxyR-C199S partially inhibited RNAP binding to the tin7 promoter in vitro, even though the OxyR and RNAP-P1 binding sites probably do not overlap, and in vivo expression of tin7 was reduced 5- to 10-fold in dam- cells. These results suggest that OxyR can repress tin7.

Documentos Relacionados