Evidence that action potentials activate an internodal potassium conductance in lizard myelinated axons.

AUTOR(ES)
RESUMO

1. We have studied action potentials and after-potentials evoked in the internodal region of visualized lizard intramuscular nerve fibres by stimulation of the proximal nerve trunk. Voltage recordings were obtained using microelectrodes inserted into the axon (intra-axonal) or into the layers of myelin (peri-internodal), with the goal of studying conditions required to activate internodal K+ currents. 2. Peri-internodal recordings made using K2SO4-, KCl- or NaCl-filled electrodes exhibited a negligible resting potential (less than 2 mV), but showed action potentials with peak amplitudes of up to 78 mV and a duration less than or equal to that of the intra-axonally recorded action potential. 3. Following ionophoretic application of potassium from a peri-internodal microelectrode, the peri-internodal action potential was followed by a prolonged (hundreds of milliseconds) negative plateau. This plateau was not seen following peri-internodal ionophoresis of sodium. The prolonged negative potential (PNP) was confined to the K(+)-injected internode: it could be recorded by a second peri-internodal microelectrode inserted into the same internode, but not into an adjacent internode. 4. The peri-internodally recorded PNP was accompanied by an equally prolonged intra-axonal depolarizing after-potential, and by an increase in the conductance of the internodal axolemma. However, the K+ ionophoresis that produced the PNP had little or no detectable effect on the intra-axonally or peri-internodally recorded resting potential or action potential. These findings suggest that the PNP is generated by an inward current across the axolemma of the K(+)-injected internode, through channels opened following the action potential. 5. Following peri-internodal K+ ionophoresis a PNP could also be evoked by passage of depolarizing current pulses through an intra-axonal electrode or by passage of negative current pulses through an electrode in the K(+)-filled peri-internodal region. The threshold for evoking a PNP was less than the threshold for evoking an action potential, and the PNP persisted in 10 microM-tetrodotoxin. Thus the PNP is evoked by depolarization of the axolemma rather than by Na+ influx. 6. The PNP was reversibly blocked by tetraethylammonium (TEA, 2-10 mM), but was not blocked by 100 microM-3,4-diaminopyridine or 5 mM-4-aminopyridine.(ABSTRACT TRUNCATED AT 400 WORDS)

Documentos Relacionados