Evolution of Ciprofloxacin-Resistant Staphylococcus aureus in In Vitro Pharmacokinetic Environments

AUTOR(ES)
FONTE

American Society for Microbiology

RESUMO

The development of novel antibacterial agents is decreasing despite increasing resistance to presently available agents among common pathogens. Insights into relationships between pharmacodynamics and resistance may provide ways to optimize the use of existing agents. The evolution of resistance was examined in two ciprofloxacin-susceptible Staphylococcus aureus strains exposed to in vitro-simulated clinical and experimental ciprofloxacin pharmacokinetic profiles for 96 h. As the average steady-state concentration (Cavg ss) increased, the rate of killing approached a maximum, and the rate of regrowth decreased. The enrichment of subpopulations with mutations in grlA and low-level ciprofloxacin resistance also varied depending on the pharmacokinetic environment. A regimen producing values for Cavg ss slightly above the MIC selected resistant variants with grlA mutations that did not evolve to higher levels of resistance. Clinical regimens which provided values for Cavg ss intermediate to the MIC and mutant prevention concentration (MPC) resulted in the emergence of subpopulations with gyrA mutations and higher levels of resistance. A regimen producing values for Cavg ss close to the MPC selected grlA mutants, but the appearance of subpopulations with higher levels of resistance was diminished. A regimen designed to maintain ciprofloxacin concentrations entirely above the MPC appeared to eradicate low-level resistant variants in the inoculum and prevent the emergence of higher levels of resistance. There was no relationship between the time that ciprofloxacin concentrations remained between the MIC and the MPC and the degree of resistance or the presence or type of ciprofloxacin-resistance mutations that appeared in grlA or gyrA. Regimens designed to eradicate low-level resistant variants in S. aureus populations may prevent the emergence of higher levels of fluoroquinolone resistance.

Documentos Relacionados