FGF2 species of 18 and 22.5 kDa: paracrine molecular signaling and biological functions / FGF2 de 18kDa e de 22,5kDa: sinalização molecular parácrina e funções biológias

AUTOR(ES)
DATA DE PUBLICAÇÃO

2010

RESUMO

FGF2 (Fibroblast Growth Factor 2), the founder of the FGF family, has regulatory functions in mitogenesis, differentiation, morphogenesis and tissue repair. Multiple FGF2 molecular species, sharing a C-terminal sequence of 155 amino acids, are translated from different iniciation sites of the same mRNA. The smaller, the FGF2-18kD, is extracellularly released to bind to specific membrane receptors (FGFRs), performing paracrine and autocrine functions. On the other hand, the larger FGF2s (21, 22, 22.5 and 34kDa) are intracellular species that bind to unknown partners to play still undefined intracrine roles. The aim of this thesis was to produce recombinant species of FGF2-18kDa and FGF2-22,5kDa, in the form of fusion proteins, to analyze functions and signaling mechanisms. In mouse Y1 malignant cells, FGF2-18kD recombinants (FGF2-18kDa and His-FGF2-18kDaProA) triggered an antagonistic response activating mitogenic signaling pathways, but blocking the cell cycle. However, in non tumorigenic Balb3T3 fibroblasts, these same FGF2-18kD recombinants only elicited the classical mitogenic response. All biological effects of these FGF2-18kD recombinants were blocked by the specific inhibitor of FGFR-protein-tyrosine-kinases, PD173074, demonstrating that these responses are mediated by FGFRs. Therefore, the new peptide domains added to FGF2-18kD did not prevent these recombinant fusion proteins to bind and activate FGFRs. Conversely, the recombinant His-FGF2-22,5kDa triggered only mitogenic signaling pathways in both Y1 and Balb3T3 cells, a biological effect not inhibited by PD173074. These results suggested that the additional basic-rich N-terminal sequence of 55 amino acid residues, found in FGF2-22,5kDa, prevents this FGF2 species from binding and / or activate FGFRs. However, surprisingly, the recombinant His-FGF2-22kDaProA triggered the antagonistic response characteristic of FGF2-18kDa. These results imply that the ProA-domain added to the C-terminal end rendered the FGF2-22,5kDaProA a good ligand of FGFRs. The physical interaction between recombinants of both His-FGF2-18kD and His-FGF2-22kDa with putative FGFRs, analyzed by SPR, yielded close KD values (KD18=21, 5.10-9 e K D22,5=20,7.10-9), while the number of binding sites in cell microsomal vesicles were significantly lower for the His-FGF2-22,5kDa. These results are consistent with the existence of different receptors for FGF2 and FGF2-18kD-22,5kDa, a hypothesis that has yet to be definitively confirmed. In conclusion, FGF2-18kD, even as recombinant fusion proteins, triggered all biological effects of FGF2, through FGFRs. Conversely, the FGF2-22, 5kDa only triggered the classical mitogenic response, probably via receptors other than FGFRs. The results and conclusions of this thesis are potentially of great interest in cancer molecular biology, with implications in oncologic therapy.

ASSUNTO(S)

fgf proteínas recombinantes ressonância plasmônica de superfície surface plasmon resonance (spr) proliferação celular recombinant proteins structure and function of proteins estrutura e função de proteínas fgf fgf-2 cell proliferation fgf-2

Documentos Relacionados