Fine structure and evolution of the rat serum albumin gene.

AUTOR(ES)
RESUMO

The exons, their boundaries, and approximately half of the intronic deoxyribonucleic acid of the rat serum albumin gene were sequenced. In addition to the 14 exons identified earlier by R-loop analysis, a small exon was detected between the "leader" exon (Z) and exon B. The leader exon encoded the 5'-untranslated portion of albumin messenger ribonucleic acid and the "pre-pro" oligopeptide present on the nascent protein. The sites of initiation and termination of transcription were tentatively identified by comparison of the 5' and 3' gene-flanking sequences with those of other eucaryotic genes. All 28 intron/exon junctions conformed to the "GT-AG rule" (Breathnach et al., Proc. Natl. Acad. Sci. 75:4853-4857, 1978). The three homologous domains of albumin were encoded by three subgenes that consisted of four exons each and evolved by intragenic duplication of a common ancestor. The second and forth exons of each subgene appeared to be the result of an even earlier duplication event. We propose a model for the evolution of this gene that accounts for the observed patterns of exon size and homology.

Documentos Relacionados