Fluorescence properties of a new guanosine analog incorporated into small oligonucleotides.

AUTOR(ES)
RESUMO

The fluorescence properties of 3-methyl-isoxanthopterin (3-MI) incorporated into different oligonucleotides have been determined. This highly fluorescent guanosine analog has its absorption and fluorescence spectra well resolved from those of the normal nucleotides and the aromatic amino acids. The small shifts observed in absorption and fluorescence emission spectra upon incorporation of 3-MI into these oligonucleotides are consistent with a general solvent effect and do not suggest any contribution from the position of the probe from the 5' end, the sequence of nucleotides immediately 5' or 3' to the probe, or the single- or double-stranded nature of the oligomer. However, steady-state and time-resolved fluorescence studies indicate that the presence of a purine immediately 5' or 3' to the probe results in some dynamic but mostly static quenching in the single-stranded oligomer. Furthermore, a 3' purine is more effective than a 5' purine, and an adenine appears to be more effective than a guanine for these static quenching interactions. Formation of the double-stranded oligomer leads to an additional loss of quantum yield, which can also be ascribed primarily to static quenching. These results show that this new class of spectrally enhanced fluorescent purine analogs will be able to provide useful information concerning the perturbation of nucleic acid structures.

Documentos Relacionados