Functional interactions between herpes simplex virus immediate-early proteins during infection: gene expression as a consequence of ICP27 and different domains of ICP4.

AUTOR(ES)
RESUMO

Two of the five immediate-early gene products, ICP4 and ICP27, expressed by herpes simplex virus type 1 have profound effects on viral gene expression and are absolutely essential for virus replication. Functional interactions between ICP4 and ICP27 may contribute to establishing the program of viral gene expression that ensues during lytic infection. To evaluate this possibility, viral mutants simultaneously deleted for ICP27 and defined functional domains of ICP4 were constructed. These mutant viruses allowed a comparison of gene expression as a function of different domains of ICP4 in the presence and absence of ICP27. Gene expression in the absence of both ICP4 and ICP27 was also examined. The results of this study demonstrate a clear involvement for ICP27 in the induction of early genes, in addition to its known role in enhancing late gene expression during viral infection. In the absence of both ICP4 and ICP27, viral early gene expression, as measured by the accumulation of thymidine kinase and ICP6 messages was dramatically reduced relative to the amounts of these messages seen in the absence of only ICP4. Therefore, elevated levels of early gene expression as a consequence of ICP27 occurred in the absence of any ICP4 activity. Evidence is also presented regarding the modulation of the ICP4 repression function by ICP27. When synthesized in the absence of ICP27, a mutant ICP4 protein was impaired in its ability to repress transcription from the L/ST promoter in the context of viral infection and in vitro. This defect correlated with the loss of the ability of this mutant protein to bind to its recognition sequence when produced in infected cells in the absence of ICP27. These observations indicate that ICP27 can regulate the activity of at least one domain of the ICP4 protein as well as contribute to elevated early gene expression independently of ICP4.

Documentos Relacionados