Genetic analysis of a locus on the Bacteroides ovatus chromosome which contains xylan utilization genes.

AUTOR(ES)
RESUMO

Bacteroides ovatus, a gram-negative obligate anaerobe found in the human colon, can utilize xylan as a sole source of carbohydrate. Previously, a 3.8-kbp segment of B. ovatus chromosomal DNA, which contained genes encoding a xylanase (xylI) and a bifunctional xylosidase-arabinosidase (xsa), was cloned, and expression of the two genes was studied in Escherichia coli (T. Whitehead and R. Hespell, J. Bacteriol. 172:2408-2412, 1990). In the present study, we have used segments of the cloned region to construct insertional disruptions in the B. ovatus chromosomal locus containing these two genes. Analysis of these insertional mutants demonstrated that (i) xylI and xsa are probably part of the same operon, with xylI upstream of xsa, (ii) the true B. ovatus promoter was not cloned on the 3.5-kbp DNA fragment which expressed xylanase and xylosidase in E. coli, (iii) there is at least one gene upstream of xylI which could encode an arabinosidase, and (iv) xylosidase rather than xylanase may be a rate-limiting step in xylan utilization. Insertional mutations in the xylI-xsa locus reduced the rate of growth on xylan, but the concentration of residual sugars at the end of growth was the same as that with the wild type. Thus, a slower rate of growth on xylan was not accompanied by less extensive digestion of xylan. Mutants in which xylI had been disrupted still expressed some xylanase activity. This second activity was associated with membranes and produced xylose from xylan, whereas the xylI gene product partitioned primarily with the soluble fraction and produced xylobiose from xylan.

Documentos Relacionados