Genetic evidence for the roles of the bud-site-selection genes BUD5 and BUD2 in control of the Rsr1p (Bud1p) GTPase in yeast.

AUTOR(ES)
RESUMO

Yeast cells normally display either an axial (for MATa or MAT alpha cells) or bipolar (for MATa/alpha cells) pattern of bud-site selection. The RSR1 gene, which was previously identified as a multicopy suppressor of Ts- mutations in the bud-emergence gene CDC24, encodes a GTPase of the Ras family that is required for both budding patterns. Mutations in Rsr1p that presumably block its ability to bind or hydrolyze GTP cause a randomized budding phenotype, suggesting that regulators of Rsr1p will prove to be required for proper bud positioning. The BUD5 gene product is required for proper bud-site selection and contains similarity to GDP-dissociation stimulators (GDS) for Ras-type proteins, suggesting that Bud5p may be a GDS for Rsr1p. Here I report that BUD5 is required for wild-type RSR1, but not for mutationally activated rsr1val12, to serve as a multicopy suppressor of cdc24, indicating that Bud5p functions as a GDS for Rsr1p in vivo. To identify the GAP (GTPase-activating protein) for Rsr1p, a genetic selection was designed based on the observation that mutationally activated rsr1val12, but not wild-type RSR1, can serve as a multicopy suppressor of yeast RAS2(Ts) mutants. Mutants were selected that allowed wild-type RSR1 to act as a multicopy suppressor of RAS2(Ts). Two such mutations proved to be in the BUD2 gene, suggesting that Bud2p functions as a GAP for Rsr1p in vivo.

Documentos Relacionados