Helical structure of Bordetella pertussis fimbriae.

AUTOR(ES)
RESUMO

The helical structures of Bordetella pertussis fimbriae of serotypes 2 and 6 were determined by optical diffraction analysis of electron micrographs of negatively stained paracrystalline bundles of purified fimbriae. The fimbrial structure is based on an axial repeat of 13 nm that contains five repeating units in two complete turns of a single-start helix. This structure was confirmed by direct measurements of mass per unit length for individual fimbriae performed by dark-field scanning transmission electron microscopy of unstained specimens. These data further established that the helically repeating unit is a monomer of fimbrial protein (Mr congruent to 22,000 for type 2 and Mr congruent to 21,500 for type 6). Radial density profiles calculated from the scanning transmission electron micrographs showed that the fimbria has peak density at its center, i.e., no axial channel, consistent with the results of conventional negative-staining electron microscopy. The radial profile gives an outermost diameter of approximately 7.5 nm, although the peripheral density is, on average, diffuse, allowing sufficient intercalation between adjacent fimbriae to give a center-to-center spacing of approximately 5.5 nm in the paracrystals. Despite serological and biochemical differences between type 2 and type 6 fimbriae, the packing arrangements of their fimbrial subunits are identical. From this observation, we infer that the respective subunits may have in common conserved regions whose packing dictates the helical geometry of the fimbria. It is plausible that a similar mechanism may underlie the phenomenon of phase variations in other systems of bacterial fimbriae.

Documentos Relacionados