Herbicide resistance in Chlamydomonas reinhardtii results from a mutation in the chloroplast gene for the 32-kilodalton protein of photosystem II

AUTOR(ES)
RESUMO

We report the isolation and characterization of a uniparental mutant of Chlamydomonas reinhardtii that is resistant to 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and 2-chloro-4-ethylamino-6-isopropylamino-s-triazine (atrazine). Such herbicides inhibit photosynthesis by preventing transfer of electrons in photosystem II from the primary stable electron acceptor Q to the secondary stable electron acceptor complex B, which is thought to contain a protein of 32 kDa and a bound quinone. It has been proposed that herbicide binding to the 32-kDa protein alters the B complex so that electron transfer from Q is prohibited. Both whole and broken-cell preparations of the mutant alga show a resistance to the effects of herbicide on electron transfer from Q to B, as measured by fluorescence-induction kinetics. In the absence of herbicide, mutant cells exhibit a slower rate of Q to B electron transfer than do wild-type cells. The 32-kDa protein from wild-type cells, but not mutant cells, binds azido[14C]atrazine at 0.1 μM. We have isolated psbA, the chloroplast gene for the 32-kDa protein, from both wild-type and herbicide-resistant algae and sequenced the coding regions of the gene that are contained in five exons. The only difference between the exon nucleotide sequences of the wild-type and mutant psbA is a single T-A to G-C transversion. This mutation results in a predicted amino acid change of serine in the wild-type protein to alanine in the mutant. We suggest that this alteration in the 32-kDa protein is the molecular basis for herbicide resistance in the C. reinhardtii mutant.

Documentos Relacionados