Histone packing in the nucleosome core particle of chromatin

AUTOR(ES)
RESUMO

The chromatin core particle DNA conformation deduced in broad outline by Finch et al. [Finch, J. T., Lutter, L. C., Rhodes, D., Brown, R. S., Rushton, B., Levitt, M. & Klug, A. (1977) Nature 269, 29-36] can be described in detail using other available experimental results. Histone binding sites compatible with the pattern of pancreatic DNase I digestion (Simpson, R. T. & Whitlock, J. P., Jr. (1976) Cell 9, 347-353; Noll, M. (1977) J. Mol. Biol. 116, 49-71; Lutter, L. C. (1977) J. Mol. Biol. 117, 53-69] lend to core particle DNA pseudosymmetry characteristic of molecular point group D3. DNA symmetry and pseudosymmetry, in turn, imply equivalence and quasi-equivalence properties of the histone packing arrangement that support the following deductions: (i) One and only one α2β2 histone tetramer, presumably (H3)2(H4)2, can serve as a stable subassembly within the histone octamer. (ii) There is a unique, strand-specific way to assign DNA binding domains to the arginine-rich histones (H3 and H4). (iii) Histones H3 and H4 alone should suffice to impose a supercoiled structure on DNA, as is observed experimentally, because only the tetramer can mimic a screw dislocation and thereby complement the screw symmetry of the DNA supercoil. (iv) The two slightly lysine-rich histones H2A and H2B are probably responsible, each in a different way, for dividing the eukaryotic chromatin fiber into discrete subunits. (v) The proposed arrangement of four distinct proteins appears to be a minimum formal requirement for making nucleosomes; that is, for introducing regularly spaced supercoiled DNA folds without also allowing formation of an indefinitely long (and genetically inert) DNA superhelix.

Documentos Relacionados