Homotypic interactions of chicken GATA-1 can mediate transcriptional activation.

AUTOR(ES)
RESUMO

We used a one-hybrid system to replace precisely the finger II chicken GATA-1 DNA-binding domain with the binding domain of bacterial repressor protein LexA. The LexA DNA-binding domain lacks amino acids that function for transcriptional activation, nuclear localization, or protein dimerization. This allowed us to analyze activities of GATA-1 sequences distinct from DNA binding. We found that strong transcriptional activating sequences that function independently of finger II are present in GATA-1. Sequences including finger I contain an independent nuclear localizing function. Our data are consistent with cooperative binding of two LexA-GATA-1 hybrid proteins on a palindromic operator. The sensitivity of our transcription assay provides the first evidence that GATA-1 can make homotypic interactions in vivo. The ability of a non-DNA-binding form of GATA-1 to activate gene expression by targeting to a bound GATA-1 derivative further supports the notion that GATA-1-GATA-1 interactions may have functional consequences. A coimmunoprecipitation assay was used to demonstrate that GATA-1 multimeric complexes form in solution by protein-protein interaction. The novel ability of GATA-1 to interact homotypically may be important for the formation of higher-order structures among distant regulatory elements that share binding sites for this transcription factor. We also used the system to test the ability of GATA-1 to interact heterotypically with other activators.

Documentos Relacionados