Human 5-HT7 Receptor-Induced Inactivation of Forskolin-Stimulated Adenylate Cyclase by Risperidone, 9-OH-Risperidone and Other “Inactivating Antagonists”

AUTOR(ES)
FONTE

American Society for Pharmacology and Experimental Therapeutics

RESUMO

We have previously reported on the unusual human 5-hydroxytryptamine7 (h5-HT7) receptor-inactivating properties of risperidone, 9-OH-risperidone, bromocriptine, methiothepin, metergoline, and lisuride. Inactivation was defined as the inability of 10 μM 5-HT to stimulate cAMP accumulation after brief exposure and thorough removal of the drugs from HEK293 cells expressing h5-HT7 receptors. Herein we report that brief exposure of the h5-HT7 receptor-expressing cells to inactivating drugs, followed by removal of the drugs, results in potent and efficacious irreversible inhibition of forskolin-stimulated adenylate cyclase activity. Pretreatment, followed by removal of the inactivating drugs inhibited 10 μM forskolin-stimulated adenylate cyclase activity with potencies similar to the drugs' affinities for the h5-HT7 receptor. The actions of the inactivating drugs were pertussis toxin-insensitive, indicating the lack of Gi in their mechanism(s) of action. Methiothepin and bromocriptine maximally inhibited 10 μM forskolin-stimulated adenylate cyclase, whereas the other drugs produced partial inhibition, indicating the drugs are inducing slightly different inactive conformations of the h5-HT7 receptor. Maximal effects of these inactivating drugs occurred within 15 to 30 min of exposure of the cells to the drugs. A Gs-mediated inhibition of forskolin-stimulated activity has never been reported. The inactivating antagonists seem to induce a stable conformation of the h5-HT7 receptor, which induces an altered state of Gs, which, in turn, inhibits forskolin-mediated stimulation of adenylate cyclase. These and previous observations indicate that the inactivating antagonists represent a unique class of drugs and may reveal GPCR regulatory mechanisms previously unknown. These drugs may produce innovative approaches to the development of therapeutic drugs.

Documentos Relacionados