Identification and characterization of RP1 Tra1 cistrons involved in pilus function and plasmid mobilization.

AUTOR(ES)
RESUMO

Transfer-defective mutants of the Tra1 region of RP1 were isolated. Complementation studies involving stable heterozygotes combined with the mapping of Tn5 insertion mutations revealed two pilus cistrons, pilA and pilB, at positions 46.9 to 48.2 kb and 46.0 to 46.4 kb, respectively. All pilB mutants were Dps- (i.e., resistant to donor-specific phages PR4 and PRR1), whereas pilA mutants were Dps- (promoter-proximal mutations), Dps+/- (sensitive only to PR4 [more centrally located mutations]), or Dps+ (sensitive to both phages [promoter-distal mutations]). The correlation between the site mutated and the Dps phenotype, together with the finding that certain Dps+ pilA mutants continued to mobilize nonconjugative plasmids, suggested that pilA is bifunctional, contributing both to pilus function (at the promoter-proximal end) and to RP1 mobilization. It was also shown that the 43.5- to 49.5-kb region that includes pilA and pilB encodes all of the Tra1 pilus functions required for propagation of donor-specific phages and hence, probably, for pili that are active in conjugation. Finally, three cistrons that specifically affect RP1 mobilization were identified. Two of these, mobA and mobB, occur immediately anticlockwise to oriT and probably correspond to the traJ and traI genes characterized by other workers. The third cistron, mobC, occurs clockwise to oriT and may be a new mobilization gene, since its function can be substituted by IncP beta plasmids, a feature different from that of the traK mobilization gene which occurs in the same region but is RP1 specific. None of the mob cistrons was required for mobilization of nonconjugative plasmids, except for mobB, which was required by pVS99.

Documentos Relacionados