Identification and molecular characterization of the gene coding for acetaldehyde dehydrogenase II (acoD) of Alcaligenes eutrophus.

AUTOR(ES)
RESUMO

The N-terminal amino acid sequence of purified acetaldehyde dehydrogenase II (AcDH-II) from ethanol-grown cells of Alcaligenes eutrophus was determined. By using oligonucleotides deduced from this sequence the structural gene for AcDH-II, which was referred to as acoD, was localized on a 7.2-kbp EcoRI restriction fragment (fragment D), which has been cloned recently (C. Fründ, H. Priefert, A. Steinbüchel, and H. G. Schlegel, J. Bacteriol. 171:6539-6548, 1989). A 2.8-kbp PstI subfragment of D, which harbored acoD, was sequenced. It revealed an open reading frame of 1,518 bp, encoding a protein with a relative molecular weight of 54,819. The insertions of Tn5::mob of two transposon-induced mutants of A. eutrophus, which were impaired in the catabolism of acetoin, were mapped 483 or 1,359 bp downstream from the translational start codon of acoD. The structural gene was preceded by a putative Shine-Dalgarno sequence. The transcriptional start site 57 bp upstream of acoD was identified and was preceded by a sequence which exhibited a striking homology to the enterobacterial sigma 54-dependent promoter consensus sequence. This was in accordance with the observation that the expression of acoD and of other acetoin-catabolic genes depended on the presence of an intact rpoN-like gene. Alignments of the amino acid sequence deduced from acoD with the primary structures of aldehyde dehydrogenases from other sources revealed high degrees of homology, amounting to 46.5% identical amino acids.

Documentos Relacionados