Identification of a putative eukaryotic-like protein kinase family in the developmental bacterium Myxococcus xanthus.

AUTOR(ES)
RESUMO

Myxococcus xanthus is a gram-negative bacterium which, upon starvation, undergoes a spectacular developmental cycle culminating in the formation of spore-filled fruiting bodies. We recently characterized a protein serine-threonine kinase (Pkn1) that is required for normal development (J. Munoz-Dorado, S. Inouye, and M. Inouye, Cell 67:995-1006, 1991). pkn1 was cloned by polymerase chain reaction amplification with primers designed from conserved sequences in eukaryotic protein kinases. In this study, a fragment of the pkn1 gene and an oligonucleotide corresponding to another highly conserved region were employed as probes for Southern blot analyses, which indicated that there are at least 26 putative kinase genes in M. xanthus. Most of the putative kinase genes were cloned, and complete or partial sequencing of eight clones revealed that they indeed contained highly conserved sequences present in eukaryotic kinases. These results suggest that complex kinase cascades similar to those described for eukaryotes might be involved in regulation of the M. xanthus life cycle.

Documentos Relacionados