Identification of Arabidopsis Histone Deacetylase HDA6 Mutants That Affect Transgene Expression

AUTOR(ES)
FONTE

American Society of Plant Physiologists

RESUMO

A mutant screen was conducted in Arabidopsis that was based on deregulated expression of auxin-responsive transgenes. Two different tightly regulated (i.e., very low expression in the absence of auxin treatment and very high expression after exogenous auxin treatment) auxin-responsive promoters were used to drive the expression of both a β-glucuronidase (GUS) reporter gene and a hygromycin phosphotransferase (HPH)–selectable marker gene. This screen yielded several mutants, and five of the mutations (axe1-1 to axe1-5) mapped to the same locus on chromosome 5. A map-based cloning approach was used to locate the axe1 mutations in an Arabidopsis RPD3-like histone deacetylase gene, referred to as HDA6. The axe1 mutant plants displayed increased expression of the GUS and HPH transgenes in the absence of auxin treatment and increased auxin-inducible expression of the transgenes compared with nonmutant control plants. None of a variety of endogenous, natural auxin-inducible genes in the mutant plants were upregulated like the transgenes, however. Results of treatment with the DNA methylation inhibitor 5-aza-2′-deoxycytidine suggest that the axe1 mutations affect transgene silencing; however, histone deacetylase inhibitors had no affect on transgene silencing in mutant or control plants. The specific effect of AtHDA6 mutations on the auxin-responsive transgenes implicates this RPD3-like histone deacetylase as playing a role in transgene silencing. Furthermore, the effect of AtHDA6 on transgene silencing may be independent of its histone deacetylase activity.

Documentos Relacionados