Identification of two independent transcriptional activation domains in the Autographa californica multicapsid nuclear polyhedrosis virus IE1 protein.

AUTOR(ES)
RESUMO

The Autographa californica multicapsid nuclear polyhedrosis virus immediate-early protein, IE1, is a 582-amino-acid phosphoprotein that regulates the transcription of early viral genes. Deletion of N-terminal regions of IE1 in previous studies (G. R. Kovacs, J. Choi, L. A. Guarino, and M. D. Summers, J. Virol. 66:7429-7437, 1992) resulted in the loss of transcriptional activation, suggesting that this region may contain an acidic activation domain. To identify independently functional transcriptional activation domains, we developed a heterologous system in which potential regulatory domains were fused with a modified Escherichia coli Lac repressor protein that contains a nuclear localization signal (NLacR). Transcriptional activation by the resulting NLacR-IE1 chimeras was measured with a basal baculovirus early promoter containing optimized Lac repressor binding sites (lac operators). Chimeras containing IE1 peptides dramatically activated transcription of the basal promoter only when lac operator sequences were present. In addition, transcriptional activation by NLacR-IE1 chimeras was allosterically regulated by the lactose analog, isopropyl-beta-D-thiogalactopyranoside (IPTG). For a more detailed analysis of IE1 regulatory domains, the M1 to T266 N-terminal portion of IE1 was subdivided (on the basis of average amino acid charge) into five smaller regions which were fused in various combinations to NLacR. Regions M1 to N125 and A168 to G222 were identified as independent transcriptional activation domains. Some NLacR-IE1 chimeras exhibited retarded migration in sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels. As with wild-type IE1, this aberrant gel mobility was associated with phosphorylation. Mapping studies with the NLacR-IE1 chimeras indicate that the M1 to A168 region of IE1 is necessary for this phosphorylation-associated effect.

Documentos Relacionados