Inappropriate splicing of a chimeric gene containing a large internal exon results in exon skipping in transgenic mice.

AUTOR(ES)
RESUMO

We generated transgenic mice containing a chimeric construct consisting of the alpha-cardiac myosin heavy chain (alpha cMHC) promoter and the human renin (hRen) gene in order to target hRen synthesis specifically to the heart. The construct consisted of three segments: (i) an alpha cMHC DNA segment including 4.5 kb of 5' flanking DNA and an additional 1.1 kb of genomic DNA encompassing exons I-III (non-coding) and the first two introns; (ii) a partial hRen cDNA consisting of exons I-VI; and (iii) a hRen genomic segment containing exons VII through IX, their intervening introns, and 400 bp of 3' flanking DNA. This results in the formation of a 909 bp internal fusion exon consisting of alpha cMHC, polylinker, and hRen sequences. Despite the presence of splice acceptor and donor sites bracketing this exon, transcription of this transgene resulted in a major alternatively spliced mRNA lacking the exon and therefore a majority of the hRen coding sequence. Cloning and sequencing of RT-PCR products from several heart samples from two independent transgenic lines confirmed accurate and faithful splicing of alpha cMHC exon II to hRen exon VII thus bypassing the internal fusion exon. All other exons (alpha cMHC exons I and II and hRen exons VII, VIII and IX) were appropriately spliced. These results are consistent with the hypothesis on exon definition which states that internal exons have a size limitation. Moreover, the results demonstrate that transgenes present in the genome at independent insertion sites and in either a single copy or multiple copies can be subject to exon skipping. The implications for transgene design will be discussed.

Documentos Relacionados