Induction of protein-tyrosine-phosphatase activity by interleukin 6 in M1 myeloblastic cells and analysis of possible counteractions by the BCR-ABL oncogene.

AUTOR(ES)
RESUMO

Interleukin 6 (IL-6) induces in M1 myeloblastic cells growth arrest and terminal differentiation toward monocytes. It is reported here that IL-6 reduced by 5- to 20-fold the tyrosine phosphorylation of cellular proteins in these cells. The same-fold reduction was also observed in M1 cells that were transfected with the BCR-ABL deregulated protein kinase. In these stable clones, the levels of tyrosine phosphorylation of cellular proteins were 30- to 100-fold higher than in the parental cells. IL-6 did not reduce the expression levels or the inherent tyrosine kinase activity of BCR-ABL p210. By measuring the protein-tyrosine-phosphatase (PTPase; protein-tyrosine-phosphate phosphohydrolase, EC 3.1.3.48) activity in crude cell lysates, we found that protein dephosphorylation resulted, at least partially, from induction of PTPase activity by IL-6. The induction of PTPase in the BCR-ABL-transfected clones was not sufficient to confer the minimal protein phosphorylation levels characteristic of IL-6-treated cells. Yet, the transfected M1 clones showed normal growth and differentiation responses to IL-6. None of the gene responses to IL-6 including suppression in the levels of c-myc, c-myb, and cyclin A mRNA; junB and c-jun mRNA induction; and dephosphorylation of retinoblastoma protein were rescued by the BCR-ABL oncogene. The functional relevance of PTPase induction by IL-6 is discussed.

Documentos Relacionados