Inexistencia de blow-up hiperbolico simples para a equação quasi-geostrofica
AUTOR(ES)
Lucas Catão de Freitas Ferreira
DATA DE PUBLICAÇÃO
2002
RESUMO
Nonexistence of simple hyperbolic blow-up for the quasigeostrophic equation. This master dissertation deals with the quasigeostrophic equations, a system of integro-differential equations that has been proposed as a model for the process of large-scale front formation in the atmosphere. These equations have a structure that resembles the system of two dimensional incompressible and ideal fiuid dynamics but, in their scaling behavior, they bear an important analogy with the three dimensional equations. An important problem of current interest is the possibility of spontaneous singularity formation in initially smooth solutions of the quasigeostrophic equations, a problem bearing similarity with the celebrated analogous problem regarding solutions of 3D Euler and Navier-Stokes. The main objective of this dissertation is to examine the unexpected Cordoba Theorem (D. Cordoba, Ann. of Math. 148 (1998), 1135-1152), where it was established the impossibility of sin gularity formation through simple hyperbolic blow-up, which had been previously proposed and numerically investigated as a probable mech anism for singularity formation
ASSUNTO(S)
dinamica dos fluidos singularidades (matematica) equações diferenciais parciais
ACESSO AO ARTIGO
http://libdigi.unicamp.br/document/?code=vtls000247029Documentos Relacionados
- Blow-up of solutions of nonlinear wave equations in three space dimensions
- Soluções tipo blow-up para equações elípticas quasilineares com termo semilinear satisfazendo a condição de Keller-Osserman
- A fotografia em Las babas del diablo e em Blow-Up : marca de indecisões
- Existência de soluções blow-up via método de sub e supersolução para uma classe de problemas elípticos.
- Soluções auto-similares para a equação quase-geostrofica e comportamento assintotico