Influence of inorganic phosphate and pH on ATP utilization in fast and slow skeletal muscle fibers.

AUTOR(ES)
RESUMO

The influence of P(i) and pH was studied on myofibrillar ATP turnover and force development during maximally activated isometric contractions, in skinned single fibers from rabbit soleus and psoas muscle. ATP hydrolysis was coupled to the breakdown of NADH, which was monitored photometrically at 340 nm. In psoas the depression by phosphate of force is twice that of ATP turnover, but in soleus force and ATP turnover are depressed equally by P(i). Most, but not all, of the ATPase and force values observed for a combination of high P(i) and low pH could be explained by independent effects of P(i) and pH. The effects of P(i) and pH on ATP turnover can be understood by a three-state cross-bridge scheme. Mass action of phosphate on the reaction from the actomyosin(AM).ADP state to the AM.ADP.P(i) state may largely account for the phosphate dependencies of ATPase activity found. Protons affect cross-bridge detachment from the AM.ADP state and the rate of the AM.ADP.P(i)-to-AM.ADP transition. In this scheme, the effects of P(i) and pH on cross-bridge kinetics appeared to be largely independent.

Documentos Relacionados