Influence of peptide acylation, liposome incorporation, and synthetic immunomodulators on the immunogenicity of a 1-23 peptide of glycoprotein D of herpes simplex virus: implications for subunit vaccines.

AUTOR(ES)
RESUMO

A peptide corresponding to residues 1 to 23 of glycoprotein D of herpes simplex virus type 1 was chemically synthesized and coupled to a fatty acid carrier by standard Merrifield synthesis procedures. The resulting peptide-palmitic acid conjugate (acylpeptide) exhibited enhanced immunogenicity in mice as compared with that exhibited by the free form of the peptide. Incorporation of the acylpeptide into liposomes further increased the immunogenicity of the peptide, while inclusion of the immunomodulators muramyl tripeptide phosphatidylethanolamine and monophosphoryl lipid A into the same liposome stimulated the strongest response. The humoral immune responses induced by the acylpeptide-liposome construct were greater than those induced by peptide in Freund complete adjuvant, and cellular responses were equal. The acylpeptide-immunomodulator-liposome formulation also induced significant levels of protective immunity, although the immunity was less than that induced by herpes simplex virus infection. Acylated peptides, especially in liposomes, were taken up more effectively by draining lymph nodes, which possibly accounts in part for the enhanced immunogenicity of the peptides. Since the acylpeptide-immunoliposome formulation used was nontoxic, it could represent a useful way to enhance immunogenicity of subunit peptides used for vaccine purpose in humans and animals.

Documentos Relacionados