Inhibitors of two-component signal transduction systems: inhibition of alginate gene activation in Pseudomonas aeruginosa.

AUTOR(ES)
RESUMO

Pseudomonas aeruginosa strains infecting cystic fibrosis patients often produce copious amounts of the exopolysaccharide alginate. Expression of alginate genes in P. aeruginosa is regulated by several proteins including members of the two-component bacterial signal transduction systems. Two of these regulatory proteins are AlgR1, the DNA-binding response regulator that transcriptionally activates alginate gene expression, and AlgR2, the kinase that modifies AlgR1 via phosphorylation to enhance its activity. In this paper, we report the identification of compounds that inhibit alginate gene expression by inhibiting (i) the phosphorylation/dephosphorylation of AlgR2 and (ii) the DNA-binding activity of AlgR1. Compounds with these activities may have potential as components of therapy for eliminating P. aeruginosa infection from the cystic fibrosis lung. In addition, we describe the effect of these compounds on the autophosphorylation activity of other known two-component kinases and show the ability of one compound to significantly inhibit the kinase activities of CheA, NRII, and KinA.

Documentos Relacionados