Inhibitory effects of antisense oligodeoxynucleotides targeting c-myc mRNA on smooth muscle cell proliferation and migration.

AUTOR(ES)
RESUMO

Smooth muscle cell (SMC) proliferation and migration play pivotal roles in restenosis following angioplasty. c-myc is an immediate early response gene induced by various mitogens, and several lines of evidence derived from experiments using transformed or hematopoietic cell lines, or transgenic mice, suggest its protein product plays a role in numerous signaling transduction pathways, including those modulating cell division. We therefore reasoned that a strategy employing oligodeoxynucleotides (ODNs) complementary to c-myc mRNA (antisense ODNs) might be potent inhibitors of SMC proliferation and, perhaps, of SMC migration. To evaluate this concept, we tested several antisense ODNs targeted to c-myc mRNA (15- or 18-mer ODNs complementary to different c-myc mRNA sequences) by introducing them individually into the medium of cultured rat aortic SMCs. Phosphoroamidate-modified ODNs were employed to retard degradation. Antisense ODNs inhibited, in a concentration-dependent manner, SMC proliferation and SMC migration. Maximal inhibitory effect was 50% for proliferation and > 90% for migration. These effects were associated with decreased SMC expression of c-myc-encoded protein by Western immunoblotting and immunocytochemical staining. ODNs with the same nucleotides but a scrambled sequence caused no effect. These results indicate that the c-myc gene product is involved in the signal transduction pathways mediating SMC proliferation and migration in the in vitro model we employed. The results also suggest a potential role of antisense strategies designed to inhibit c-myc expression for the prevention of coronary restenosis.

Documentos Relacionados