Initiation points for cellular deoxyribonucleic acid replication in human lymphoid cells converted by Epstein-Barr virus.

AUTOR(ES)
RESUMO

Replicon size was estimated in two Epstein-Barr virus (EBV)-negative human lymphoma lines, BJAB and Ramos, and four EBV-positive lines derived from the former ones by infection (conversion) with two viral strains, B95-8 and P3HR-1. Logarithmic cultures were pulse-labeled with [3H]thymidine, and the deoxyribonucleic acid was spread on microscopic slides and autoradiographed by the method of Huberman and Riggs. After developing, replication forks were visualized as silver grain tracks on the autoradiograms. Average replicon size was estimated by scoring the number of replication forks per constant length of deoxyribonucleic acid and by measuring distances between centers of adjacent tracks, followed by detailed statistical analyses. Three of the four EBV-converted cell lines, BJAB/B95-8, Ra/B95-8, and Ra/HRIK, were found to have significantly shorter replicons (41, 21, 54% shorter, respectively), i.e., more initiation points, than their EBV-negative parents. BJAB/HRIK had replicons which were only slightly shorter (11%) than those of BJAB. However, analysis of track length demonstrated that extensive track fusion occurred during the labeling of BJAB/ HRIK, implying that its true average replicon size is shorter than the observed value. The results indicate that in analogy to simian virus 40, EBV activates new initiation points for cellular DNA replication in EBV-transformed cells.

Documentos Relacionados