"Interação do laser de diodo de alta potência com a superfície radicular. Efeito na morfologia, na variação de temperatura e na adesão e proliferação de fibroblastos em cultura" / Interaction between high power diode laser and dental root surface. Thermal, morphological and biocompatibility analysis

AUTOR(ES)
DATA DE PUBLICAÇÃO

2006

RESUMO

The aim of this study was to analyze the interaction between the high power diode laser and the dental root surface through the temperature variation analysis (Step A), root surface morphological observation (Step B), adhesion and proliferation of fibroblasts cultured on the top of the root surfaces (Step C). Twenty-one uniradicular teeth were used in the 3 steps of the experiments. The experimental groups were, as follows: Control group - root planning and scaling using Gracey curets; INT group - the root surfaces received the same treatment as control group followed by laser irradiation (high power diode laser, wavelength 808 nm, 400 µm optical fiber used parallel to the root surface, 1,5 W for 30 s, 597,1 W/cm 2 ), and CW - treated as the INT group however in a continuous wave. For the step A thermocouples were used; for step B, scanning electron microscopy (SEM) of the treated root surfaces of the 3 experimental groups, and at the Step C, fibroblasts were plated on the top of the root surfaces, and in scanning electronmicrographs the attached cells were counted 24 (adhesion), 48 e 72 h (proliferation) after plating. The temperature monitorization showed that, with the parameters used, there was an increase in temperature within the biological safety limits and, this increase was significantly higher for the CW group. At the root surfaces of irradiated groups a modified smear-layer was observed exhibiting rough areas intermingled to smooth areas corresponding to areas of fusion and resolidification of dental hard tissues. Open dentinal tubules were not observed. The fibroblasts plated on the top of the irradiated surfaces adhered and proliferated throughout the experimental time (0 to 3 days). The growth curves of the irradiated groups, independently of the irradiation mode, showed biological behavior similar between them and with the control group. At the conditions of this study, we concluded that the use of high power diode laser for root surface conditioning is thermically safe and causes similar superficial morphological changes independently of the irradiation mode used. Additionally, these root surfaces are biocompatible because did not impair the cell adhesion and growth

ASSUNTO(S)

cells culture laser de diodo de alta potência cultura de células root surface diode laser superfície radicular

Documentos Relacionados