Interactions among LRF-1, JunB, c-Jun, and c-Fos define a regulatory program in the G1 phase of liver regeneration.

AUTOR(ES)
RESUMO

In regenerating liver, a physiologically normal model of cell growth, LRF-1, JunB, c-Jun, and c-Fos among Jun/Fos/LRF-1 family members are induced posthepatectomy. In liver cells, high levels of c-Fos/c-Jun, c-Fos/JunB, LRF-1/c-Jun, and LRF-1/JunB complexes are present for several hours after the G0/G1 transition, and the relative level of LRF-1/JunB complexes increases during G1. We provide evidence for dramatic differences in promoter-specific activation by LRF-1- and c-Fos-containing complexes. LRF-1 in combination with either Jun protein strongly activates a cyclic AMP response element-containing promoter which c-Fos/Jun does not activate. LRF-1/c-Jun, c-Fos/c-Jun, and c-Fos/JunB activate specific AP-1 and ATF site-containing promoters, and in contrast, LRF-1/JunB potently represses c-Fos- and c-Jun-mediated activation of these promoters. Repression is dependent on a region in LRF-1 that includes amino acids 40 to 84 (domain R) and the basic/leucine zipper domain. As the relative level of LRF-1/JunB complexes increases posthepatectomy, c-Fos/Jun-mediated ATF and AP-1 site activation is likely to decrease with simultaneous transcriptional activation of the many liver-specific genes whose promoters contain cyclic AMP response element sites. Thus, through complex interactions among LRF-1, JunB, c-Jun, and c-Fos, control of delayed gene expression may be established for extended times during the G1 phase of hepatic growth.

Documentos Relacionados