Interferons and interleukin 6 suppress phosphorylation of the retinoblastoma protein in growth-sensitive hematopoietic cells.

AUTOR(ES)
RESUMO

One approach to identify postreceptor molecular events that transduce the negative-growth signals of inhibitory cytokines is to analyze the cytokine-induced modifications in the expression of cell-cycle-controlling genes. Here we report that suppression of phosphorylation of the retinoblastoma gene product (pRb) is a receptor-generated event triggered by interferons and interleukin 6 (IL-6) in hematopoietic cell lines. The conversion of pRb to the underphosphorylated forms occurs concomitantly with the decline in c-myc protein expression and both events precede the G0/G1-phase arrest induced by the cytokines. Loss of IL-6-induced c-myc responses in cells that have been stably transfected with constitutive versions of the c-myc gene abrogates the typical G0/G1-phase arrest but does not prevent the specific dephosphorylation of pRb. Conversely, depletion of protein kinase C from cells interferes with part of the interferon-induced suppression of pRb phosphorylation and relieves the G0/G1-phase cell-cycle block without affecting the extent of c-myc inhibition. None of the cytokines, including transforming growth factor beta, reduce the phosphorylation of pRb in S-phase-blocked cells. In contrast, the other IL-6-induced molecular responses, including the decline in c-myc mRNA levels, are not phase-specific and develop normally in S-phase-blocked cells that are depleted of the underphosphorylated functional forms of pRb. These and the suppression of pRb phosphorylation, which occur independently of each other, and suggest that the development of the interferon- or IL-6-induced G0/G1-specific arrest requires at least these two receptor-generated events.

Documentos Relacionados