Investigation of cadmium resistance in an Alcaligenes sp.

AUTOR(ES)
RESUMO

The mechanisms of metal resistance of a cadmium-resistant Alcaligenes sp. were studied. Growth in a defined medium was unaffected by cadmium at concentrations up to 0.1 mM, while at concentrations up to 2.5 mM, growth occurred after an extended lag phase. The increase in length of the lag phase was abolished by repeated subculturing at these higher concentrations. However, subculture in the absence of cadmium reversed the adaptation process. Plasmid DNA was not detected in adapted cells, suggesting that adaptation is not plasmid mediated. Increased sulfide production in response to cadmium was observed, although the levels were too low to account fully for cadmium resistance. Adaptation of cells to cadmium resulted in the appearance of a major new membrane protein (molecular weight, 34,500) whose presence was not dependent upon the method of membrane preparation. This protein was induced at cadmium concentrations of 0.1 mM and above, but below this level the protein was absent. The onset of growth at concentrations above 0.1 mM was coincident with the appearance of this protein, which was also induced by zinc (0.4 mM) but not by manganese or nickel. The protein was only solubilized by a sodium dodecyl sulfate-2-mercaptoethanol mixture. Similar solubility properties were shown by a second major membrane protein (molecular weight, 33,000). These two proteins proved to be similar by peptide-mapping experiments and amino acid analysis. The appearance of the 34,500-molecular-weight protein and its possible role in cadmium resistance are discussed.

Documentos Relacionados