Investigation of the control of coronavirus subgenomic mRNA transcription by using T7-generated negative-sense RNA transcripts.

AUTOR(ES)
RESUMO

The subgenomic mRNAs of the coronavirus transmissible gastroenteritis virus (TGEV) are not produced in equimolar amounts. We have developed a reporter gene system to investigate the control of this differential subgenomic mRNA synthesis. Transcription of mRNAs by the TGEV polymerase was obtained from negative-sense RNA templates generated in situ from DNA containing a T7 promoter. A series of gene cassettes was produced; these cassettes comprised the reporter chloramphenicol acetyltransferase (CAT) gene downstream of transcription-associated sequences (TASs) (also referred to as intergenic sequences and promoters) believed to be involved in the synthesis of TGEV subgenomic mRNAs 6 and 7. The gene cassettes were designed so that negative-sense RNA copies of the CAT gene with sequences complementary to the TGEV TASs, or modified versions, at the 3' end would be synthesized in situ by T7 RNA polymerase. Using this system, we have demonstrated that CAT was expressed from mRNAs derived from the T7-generated negative-sense RNA transcripts only in TGEV-infected cells and only from transcripts possessing a TGEV negative-sense TAS. Analysis of the CAT mRNAs showed the presence of the TGEV leader RNA sequence at the 5' end, in keeping with observations that all coronavirus mRNAs have a 5' leader sequence corresponding to the 5' end of the genomic RNA. Our results indicated that the CAT mRNAs were transcribed from the in situ-synthesized negative-sense RNA templates without the requirement of TGEV genomic 5' or 3' sequences on the T7-generated negative-sense transcripts (3'-TAS-CAT-5'). Modification of the TGEV TASs indicated (i) that the degree of potential base pairing between the 3' end of the leader RNA and the TGEV negative-sense TAS was not the sole determinant of the amount of subgenomic mRNA transcribed and (ii) that other factors, including nucleotides flanking the TAS, are involved in the regulation of transcription of TGEV subgenomic mRNAs.

Documentos Relacionados