Isolation and partial characterization of membrane vesicles carrying markers of the membrane adhesion sites.

AUTOR(ES)
RESUMO

At areas of adhesion between outer membrane (OM) and inner membrane (IM) in gram-negative bacteria, newly synthesized membrane constituents are inserted, and bacteriophage infection occurs. We describe here the isolation of these sites from cell membrane fractions of Salmonella anatum. Sucrose density gradients yielded membrane vesicles of the OM and IM; their mutual cross-contamination was low, as measured by 2-keto-3-deoxyoctonate and beta-NADH-oxidase activities. To mark the areas of lipopolysaccharide synthesis in the envelope (the adhesion sites), we infected S. anatum with phage epsilon 15, which causes a rapid change (conversion) in the cell's O-antigenic composition from serogroup E1 to E2; lipopolysaccharide of type E2 also serves as receptor for phage epsilon 34. We found that the fractions of intermediate density (Int. M) from briefly converted cells bound both phage epsilon 34 and E2-specific antibody. In the electron microscope, epsilon 34 was seen to have absorbed with a high degree of significance to the Int. M fraction of briefly converted cells, but not to the Int. M fraction of unconverted cells. Furthermore, the Int. M fractions of briefly converted cells coagglutinated anti-E2-coated Staphylococcus aureus, whereas the OM and IM fractions showed comparatively little agglutination. In addition, Int. M material exhibited elevated phospholipase A1 and A2 activities comparable to those of the OM fraction; the IM was essentially phospholipase free. Our data indicate that this membrane fractionation allows one to isolate from Int. M regions a variety of activities associated with adhesion sites.

Documentos Relacionados