Isolation of a herpes simplex virus cDNA encoding the DNA repair enzyme uracil-DNA glycosylase.

AUTOR(ES)
RESUMO

Activity of the DNA repair enzyme uracil-DNA glycosylase has been shown to increase in herpes simplex virus type 2 (HSV-2)-infected cells. When mRNA derived from either HSV-1- or HSV-2-infected HeLa S3 cells was translated in an in vitro translation system, significant uracil-DNA glycosylase activity could be detected in the lysate. This activity was specific for the removal of uracil from DNA. Lysates from in vitro translation of mRNA derived from uninfected HeLa cells did not contain measurable glycosylase activity. A cDNA library was constructed with mRNA derived from HSV-2-infected cells 10 h postinfection. Pooled isolates from this library were used in hybrid-arrest and in vitro translation reactions to isolate a uracil-DNA glycosylase-specific cDNA. In vitro translation of hybrid-selected RNA, by using this cDNA, produced glycosylase activity in the lysate. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of radiolabeled products from this translation reaction showed a protein component with a molecular weight of 39,000. This is consistent with the molecular weight determinations of the purified glycosylase enzyme derived from either uninfected or HSV-infected HeLa cells. Northern (RNA blot) analysis of HSV-derived RNA, by using the glycosylase cDNA as a probe, revealed five overlapping transcripts of 3.4, 2.8, 2.4, 1.7, and 1.0 kilobases. Southern analysis indicated that the DNA sequence encoding the HSV-specific uracil-DNA glycosylase was located between 0.065 and 0.08 map units on the prototypic arrangement of the HSV genome.

Documentos Relacionados