Kinetic analysis of the synthesis and assembly of type 1 fimbriae of Escherichia coli.

AUTOR(ES)
RESUMO

The adhesive organelles (type 1 fimbriae) of K-12 and other isolates of Escherichia coli are composed of identical 17,000-dalton subunits. We examined the assembly of these subunits into fimbrial organelles. After synthesis, the nascent subunits were first processed and then assembled into the organelles; the assembly step took almost 3 min in log-phase cultures at 37 degrees C. Even during blockage of protein synthesis, the free subunits continued to assemble until the pool was depleted. This pool was small in comparison with the amount of total fimbrial protein already assembled into surface organelles and was not sufficient to regenerate new detectable organelles after the removal of preexistent ones by blending. Assembly appeared to slow when the metabolic rate of the bacterial cells slowed, since subunits took longer to appear in the organelles at lower than optimal temperatures or as a culture entered the stationary phase. The synthetic rate of subunits slowed sooner than that of total cellular proteins as a culture approached the stationary phase and ceased completely as the culture entered the stationary phase. The amount of fimbrial antigen expressed on the surface of the cells remained relatively constant during growth of a culture.

Documentos Relacionados