Lactic Acid Translocation: Terminal Step in Glycolysis by Streptococcus faecalis

AUTOR(ES)
RESUMO

Streptococcus faecalis obtains metabolic energy chiefly from the conversion of glucose to lactic acid; the present experiments deal with the mechanism of lactic acid translocation across the cytoplasmic membrane. Efflux of [14C]lactate from preloaded cells was accelerated by raising the external pH, and also by the ionophores nigericin and valinomycin. These results suggest that lactate leaves the cell by an electroneutral process, presumably as lactic acid. Further evidence was obtained by studying the entry of [14C]lactate into nonmetabolizing cells. It appears that the membrane is essentially impermeable to the lactate anion, but allows passage of lactic acid. The most persuasive evidence is that, upon establishment of a pH gradient such that the cytoplasm was alkaline, l-[14C]lactate accumulated in the cells against the concentration gradient. Accumulation was transient, and dissipated in parallel with the collapse of the pH gradient. The concentration gradient attained at the peak was a function of the pH difference. Ionophores which are known to collapse a pH gradient, such as nigericin and valinomycin, abolished accumulation of l-lactate. We infer that lactic acid translocation, whether into the cells or outward, is an electroneutral process and for that reason the distribution of lactic acid across the membrane is a function of the pH of cytoplasm and medium. The specificity of translocation and its kinetic parameters suggest that it is mediated by a carrier of low specificity.

Documentos Relacionados