Limited B cell repertoire in severe combined immunodeficient mice engrafted with peripheral blood mononuclear cells derived from immunodeficient or normal humans.

AUTOR(ES)
RESUMO

The ability to engraft human PBMC or fetal tissue immune cells in the severe combined immunodeficient (SCID) mouse has created a need for characterization of these systems and their application to disease models. We demonstrate that SCID mice reconstituted with PBMC support the growth and differentiation of a restricted set of B cells. Human IgG levels of 1-2 mg/ml (10-20% of normal human serum levels) were routinely achieved in spite of a serum half life of only 12 d. Ig levels peaked around 50 d and Ig production was maintained for greater than 100 d. The Ig was greater than 85% IgG though some IgM, IgA, IgD, and even IgE could be detected. However, the human IgG produced in hu-PBL-SCID mice was pauci-clonal when analyzed by isoelectric focusing and by kappa/lambda light chain usage. Using a new polymerase chain reaction based analysis capable of monitoring individual VH family utilization, we found that the engrafted B cells showed skewed and restricted human VH subfamily utilization. These parameters were markedly variable among hu-PBL-SCID mice reconstituted from the same donor cell population at both early (21-50 d) and late stages (greater than 100 d). Hu-PBL/CVI-SCID mice constructed with cells from patients with common variable immunodeficiency with an in vitro block in terminal B cell differentiation produced human Ig responses that were quantitatively the same as those produced by hu-PBL-SCID mice from normal donors. The hu-PBL-SCID system using PBMC appears to lead to growth and Ig production by a small number of B cells and results in a restricted B cell repertoire.

Documentos Relacionados