Liposomes as targets for granule cytolysin from cytotoxic large granular lymphocyte tumors.

AUTOR(ES)
RESUMO

Purified cytoplasmic granules from rat large granular lymphocyte tumors having natural killer activity and/or antibody-dependent cell-mediated cytotoxicity induced a rapid, dose-dependent release of the water-soluble marker carboxyfluorescein from liposomes made of phosphatidylcholine. A solubilized, partially purified cytolytic preparation termed "cytolysin" from these granules showed identical properties. Marker release induced by granules or the cytolysin was strongly dependent on the presence of Ca2+ at a concentration of 0.1 mM or higher in the medium; Ca2+ could be replaced by higher concentration of Sr2+ but not by Ba2+ or by Mg2+. These properties strikingly parallel the lytic effects that granules and granule cytolysin exert on cells. Marker release from liposomes was stopped instantaneously when an excess of EGTA was added to the medium. The remaining carboxyfluorescein inside the liposomes was present at the original internal concentration, indicating that marker release was all-or-none from individual liposomes. Liposomes comprised of lipid in the solid phase released marker more slowly than did comparable liposomes containing fluid-phase lipids. Variation of the lipid headgroup had only minor effects on the cytolysin-induced marker release. Electron microscopy of liposomes exposed to cytolysin in the presence of Ca2+ showed cylindrical structures of 15-nm diameter inserted into the membrane concomitant with the penetration of negative stain into the liposome. These properties of large granular lymphocyte granule cytolysin strongly suggest that it operates through a mechanism similar to the membrane attack of complement.

Documentos Relacionados