Localization of chemosensitive structures in the isolated brainstem of adult guinea-pig.

AUTOR(ES)
RESUMO

1. Central respiratory chemosensitivity has been intensively examined but some questions remain unsolved; namely, what is the nature of the stimulus (fixed acid and/or CO2) and where is the site of brainstem chemosensitivity (near the ventral medullary surface or structures deeper within the brainstem)? To examine these questions, we used the in vitro isolated brainstem of adult guinea-pig perfused independently through the basilar artery and the bath. 2. Respiratory motor output was recorded with a suction electrode from cranial hypoglossal (XII) roots. Changes in pH and CO2 in the Krebs perfusate were made by changing either the bicarbonate concentration or the PCO2 saturating the Krebs solution. 3. Changes in basilar artery perfusate consisting of (i) an acidifying increase in PCO2 (hypercapnic acidic Krebs solution), (ii) an increase in PCO2 with no change in pH (hypercapnic Krebs solution), or (iii) a decrease in pH with no change in PCO2 (acidic Krebs solution) evoked increases in respiratory frequency and a concomitant decrease in inspiratory burst amplitude. 4. Bath superfusion with hypercapnic acidic Krebs solution increased the inspiratory burst amplitude with no effect on respiratory burst frequency. 5. Bath superfusion with hypercapnic non-acidic Krebs solution increased the inspiratory burst amplitude and decreased the respiratory frequency, while normocapnic acidic Krebs solution increased the respiratory frequency with no change in burst amplitude. 6. These results show that respiratory responses to changes in CO2 and pH depend upon the sites of action. While a CO2 increase or a pH decrease affected the respiratory frequency in the deep brainstem structures (perfused through the basilar artery), CO2 respiratory chemosensitivity at the ventral surface could be differentiated from the hydrogen ion chemosensitivity. This suggests that different mechanisms mediated respiratory responses when deep versus superficial brainstem structures were stimulated.

Documentos Relacionados