Locus specificity in the mutability of L5178Y mouse lymphoma cells: the role of multilocus lesions.

AUTOR(ES)
RESUMO

Mouse L5178Y strain LY-S and its parental strain LY-R differ in their comparative sensitivities to the cytotoxic effects of various mutagenic agents--i.e., strain LY-S has been found to be more sensitive, less sensitive, or similarly sensitive to individual agents in comparison to strain LY-R. Nevertheless, strain LY-S has been found to be uniformly less mutable than strain LY-R at the hypoxanthine (guanine) phosphoribosyltransferase (Hprt) locus following treatment with x-radiation, UV radiation, or alkylating agents. In the present work we have isolated subclones of strains LY-R and LY-S that are heterozygous at the thymidine kinase (Tk) locus (chromosome 11). We have found that a heterozygous LY-S Tk+/Tk- strain shows as high or higher mutability at the Tk locus than do heterozygous LY-R strains following treatment with x-radiation, UV radiation, or ethyl methanesulfonate. Mutability of all heterozygous strains at the Tk locus is much higher than at the Hprt locus following treatment with these mutagenic agents, with the exception of one heterozygous LY-R strain that possesses only one chromosome 11 and that is poorly mutable at the Tk locus by x-radiation. On the basis of these results, we have suggested that because of a repair deficiency, multilocus lesions are formed in the DNA of LY-S strains following treatment with radiation or alkylating agents; multilocus lesions lead to poor recovery of viable mutants when the target locus is closely linked to essential genes and situated on a hemizygous chromosomal region (e.g., the Hprt locus on the X chromosome or the Tk locus in strains monosomic for chromosome 11); and x-radiation is a relatively poor mutagen at loci situated on hemizygous chromosomal regions, in repair-efficient and repair-deficient cells, because of its tendency to form multilocus lesions.

Documentos Relacionados