Long-Tract Mitotic Gene Conversion in Yeast: Evidence for a Triparental Contribution during Spontaneous Recombination

AUTOR(ES)
RESUMO

In Saccharomyces cerevisiae, spontaneous mitotic gene conversion at one site is statistically correlated with recombination at other loci. In general, coincident conversion frequencies are highest for tightly linked markers and decline as a function of intermarker distance. Paradoxically, a significant fraction of mitotic gene convertants exhibits concomitant nonreciprocal segregation for multiple and widely spaced markers. We have undertaken a detailed genetic analysis of this class of mitotic recombinants. Our results indicate that mitotic gene conversion in yeast is frequently associated with nonreciprocal segregation of markers centromere-distal to the selected site of conversion. In addition, distal markers are often found to be mosaic within the product colonies. These observations, and others described here, suggest that a percentage of gene conversion in vegetative yeast cells is coupled to a chromosome break and repair mechanism. This hypothesis was further tested using a strain trisomic for chromosome VII which was specially marked to detect homolog-dependent repair events. An association between mitotic gene conversion events and the production of broken chromosomes which are repaired by a homologous-pairing-copy mechanism was supported.

Documentos Relacionados