Loss of a histidine residue at the active site of S-locus ribonuclease is associated with self-compatibility in Lycopersicon peruvianum.

AUTOR(ES)
RESUMO

Gametophytic self-incompatibility in the Solanaceae is controlled by a single, multiallelic locus, the S locus. We have recently described an allele of the S locus of Lycopersicon peruvianum that caused this normally self-incompatible plant to become self-compatible. We have now characterized two glycoproteins present in the styles of self-compatible and self-incompatible accessions of L. peruvianum: one is a ribonuclease that cosegregates with a functional self-incompatibility allele (S6 allele); the other cosegregates with the self-compatible allele (Sc allele) but has no ribonuclease activity. The derived amino acid sequences of the cDNAs encoding the S6 and Sc glycoproteins resemble sequences of other ribonucleases encoded by the S locus. The derived sequence for the Sc glycoprotein differs from the others by lacking one of the histidine residues found in all other S-locus ribonucleases. These findings demonstrate the essential role of ribonuclease activity in self-incompatibility and lend further weight to evidence that this histidine residue is involved in the catalytic site of the enzyme.

Documentos Relacionados