Mapping of the Tryptophan Genes of Acinetobacter calcoaceticus by Transformation

AUTOR(ES)
RESUMO

Auxotrophs of Acinetobacter calcoaceticus blocked in each reaction of the synthetic pathway from chorismic acid to tryptophan were obtained after N-methyl-N′-nitro-N-nitrosoguanidine mutagenesis. One novel class was found to be blocked in both anthranilate and p-aminobenzoate synthesis; these mutants (trpG) require p-aminobenzoate or folate as well as tryptophan (or anthranilate) for growth. The loci of six other auxotrophic classes requiring only tryptophan were defined by growth, accumulation, and enzymatic analysis where appropriate. The trp mutations map in three chromosomal locations. One group contains trpC and trpD (indoleglycerol phosphate synthetase and phosphoribosyl transferase) in addition to trpG mutations; this group is closely linked to a locus conferring a glutamate requirement. Another cluster contains trpA and trpB, coding for the two tryptophan synthetase (EC 4.2.1.20) subunits, along with trpF (phosphoribosylanthranilate isomerase); this group is weakly linked to a his marker. The trpE gene, coding for the large subunit of anthranilate synthetase, is unlinked to any of the above. This chromosomal distribution of the trp genes has not been observed in other organisms.

Documentos Relacionados