Mapping of two loci affecting the regulation of branched-chain amino acid transport in Escherichia coli K-12.

AUTOR(ES)
RESUMO

Two mutant loci resulting in derepression of, respectively, the L-leucine-specific transport system (lstR) and both the leucine-specific and the general branched-chain amino acid transport LIV-I systems (livR) were mapped by conjugation and transduction. Both livR and lstR were found to be closely linked to aroA at min 20 on the Escherichia coli genetic map. The merodiploid livR+/livR displayed wild-type regulation of L-leucine transport, indicating that the livR product is a diffusible, negative controlling element for high-affinity leucine transport systems. Isogenic strains carrying lstR, livR, and wild-type transport alleles were compared for leucine uptake kinetic parameters and leucine-binding protein levels. The higher levels of leucine transport in the mutant strains under repressing conditions were generally due to increased high-affinity systems, which were accompanied by striking increases in the level of leucine-binding proteins.

Documentos Relacionados